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Abstract

With a proper timing of p pulses, it is possible to reduce the effect of the static internal magnetic field gradient on the measure-
ment of diffusion with the pulsed gradient spin echo (PGSE). A pulse sequence that in the first order eliminates the effect of weak
internal static gradients in a standard PGSE experiment is introduced. The method should be applied in the cases, where strong and
short magnetic gradient pulses are used to investigate the motion of liquid in heterogeneous samples with large susceptibility differ-
ences such as porous media.
� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

The pulsed gradient spin echo experiment is a power-
ful tool for investigation of molecular diffusion [1–5].
Static magnetic gradient influences the measurement
and its effect can be reduced by the application of either
p/2 (stimulated echo) or p (CPMG sequence) pulses [6–
12]. Here a more efficient method is introduced.

The attenuation of spin echo b = ln(E0/E) for isotro-
pic diffusion can be written in the Gaussian approxima-
tion as [13–15]

b ¼ 1

p

Z 1

0

jFðxÞj2DðxÞdx: ð1Þ

E is the amplitude of the echo, E0 is the amplitude of the
free induction signal at the time of the echo 2s,

FðxÞ ¼
Z 2s

0

F0ðtÞeixtdt ð2Þ
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is the frequency spectrum of the spin dephasing
F0ðtÞ ¼ c

R t
0
Gðt0Þdt0, and c is the gyromagnetic ratio. In

the effective magnetic field gradient G (t) the application
of p pulses is accounted for and it can differ from the ac-
tual gradient gðtÞ : GðtÞ ¼ ð�1ÞnpðtÞgðtÞ; np (t) is the num-
ber of p pulses applied up to the time t—the sign of the
effective gradient changes upon every application of a p
pulse. The diffusion spectrum tensor is the Fourier trans-
form of the velocity correlation function and D (x) is the
component of the tensor along the direction of the gra-
dient field

DðxÞ ¼ 1

2

Z 1

�1
hvðtÞvð0Þiceixt dt: ð3Þ

The subscript c denotes the second cumulant
Æv (t)v(0)æc = Æv (t)v(0)æ � ÆvæÆvæ, where the average Æ� � �æ
is taken over a suitable ensemble of spins [18] and v is
the component of velocity along the direction of the
magnetic field gradient. The value D (x = 0) corre-
sponds to the free diffusion constant. Using Parseval�s
theorem it is easy to show, that for free diffusion, the
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attenuation of Eq. (1) is transformed into the well-
known expression given by Torrey [16]. The validity of
the Gaussian approximation in the frequency domain
approach is discussed in [17]. The approach is valid as
long as the diffusion displacement (2Ds) is short com-
pared to the wavelength of the spin-dephasing grating
(1/cGd) and would in our case use gradients of the mag-
nitude over kT/m.

Here, the gradient applied in a PGSE sequence is de-
noted as Ga, the static gradient as Gs and their respective
spin dephasings as Fa and Fs. The attenuation of an echo
in the combined field is

b ¼ 1

p

Z 1

0

jFaðxÞ þ FsðxÞj2DðxÞdx

¼ ba þ bs þ bas: ð4Þ

Here, ba is the echo attenuation if Gs = 0. If the
static gradient is much smaller than the applied
gradient Gs � Ga, then we can in the first approximation
neglect the echo attenuation of the static gradient
bs ¼ 1=p

R
F 2

s ðxÞDðxÞdx. The static gradient is observed
only through the mixed term

bas ¼
1

p

Z 1

0

2Re½F�
s ðxÞ � FaðxÞ�DðxÞdx; ð5Þ

where both gradient terms appear in a scalar product. In
the cases, where the background gradient is not uniform,
one should integrate the contributions over the sample to
get the echo amplitude so in the case where the direc-
tional distribution of the background gradient is uniform
the contribution from the mixed term will vanish.

Frequency spectra of spin dephasing for various gra-
dient modulations usually have one or two dominant
peaks. The peak of the dephasing spectrum for the spin
echo in a static magnetic field gradient is centered
around zero frequency. The dephasing spectrum of the
modulated gradient has a peak at the modulation fre-
Fig. 1. (A) The PGSE sequence: gradient pulses Ga are d long. The first gradi
after the first one. The refocusing p pulse is in the middle between the gradien
The dephasing is constant in the interval between the pulses and should vani
(C)—has a peak at zero frequency. The width of the peak is proportional to
quency and at zero; the amplitude of the latter depends
on the average dephasing value. The product of overlap-
ping peaks Fs (x) and Fa (x) is large and so is its contri-
bution to the echo attenuation. It is possible to construct
such a RF pulse sequence, that the peaks do not overlap
and the mixed term will vanish.

In the following, the cases of PGSE and PGSE com-
bined with two properly spaced additional p pulses will
be analyzed for isotropic Brownian diffusion D (x) = D

in the static background gradient Gs. D is the self-diffu-
sion constant.

For a PGSE sequence of two gradient pulses d long
and D apart where the first gradient pulse is applied t1
after excitation and the refocusing p pulse is applied at
the time s halfway between the gradient pulses (Fig.
1), the dephasing spectrum is

FaðxÞ ¼ 4cGae
ixs sin

xd
2
sin xD

2

x2
: ð6Þ

The dephasing spectrum of the static gradient (Fig. 2)
is

FsðxÞ ¼ 4cGse
ixs sin

2 xs
2

x2
: ð7Þ

Both spectra have a peak at zero frequency (Figs. 1C
and 2C). The attenuation Eq. (4) is

b ¼ c2D G2
ad

2ðD� d=3Þ þ 2

3
G2

ss
3 � 2

3
Ga �Gsd

�

� ðd2 þ 3dt1 þ 3ðt1 � sÞðt1 þ sÞÞ
�
: ð8Þ

For short gradient pulses d � s, with the first gradi-
ent pulse immediately after the excitation pulse t1 � s,
and for a weak static gradient Gs � Ga, the expression
reduces to

b ¼ c2DdDGa � ðGadþGsD=2Þ: ð9Þ
ent pulse is applied t1 after excitation and the second pulse is applied D
t pulses, at time s. The echo forms at time 2s. (B) Spin dephasing F 0

aðtÞ.
sh if the echo is to form. Its Fourier transform—the dephasing spectra
1/D.



Fig. 2. (A) The effective static gradient. Although the gradient is constant in time, the p pulse at time s, effectively changes its sign. (B) The spin
dephasing for the static gradient F 0

sðtÞ. The dephasing is zero at the time of the echo. (C) The dephasing spectra has a peak at zero frequency. The
width of the peak is proportional to 1/s.

Fig. 3. (A) The PGSE sequence supplemented with two p pulses
applied a2s after excitation and a2s before the echo. (B) The effective
static gradient oscillates around zero.
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When a PGSE sequence is combined with two addi-
tional p pulses applied symmetrically around the central
p pulse as shown in Fig. 3, the dephasing of the applied
gradient does not change. The time between the excitation
and the first p pulse is denoted by a2s. The dephasing of
the static gradient in this case differs from Eq. (7) and de-
pends on the timing of additional p pulses (described by
parameter a). The spectrum for a special case of a is shown
in Fig. 4 and the spectrum for a general a is given by
Fig. 4. (A) The dephasing of the static gradient oscillates, when two extra p
dephasing spectrum for this a has a peak centered off zero frequency and no
a = 1/6.
FsðxÞ ¼ 4cGse
ixs cosðxð1� 2aÞsÞ � cos2 xs

2

� �
x2

: ð10Þ

This spectrum can have a lobe around zero frequency
and a dominant peak centered off zero frequency. The
echo attenuation for this sequence is

b¼ c2D G2
ad

2ðD�d=3Þþ2

3
G2

ss
3½1�12ð1�2aÞ2a�

� �
þbas:

ð11Þ
The mixed term is

bas ¼ �c2DGa �Gs

� 2

3
d d2 þ 3dt1 þ 3ðt21 þ ð1þ 8ða� 1ÞaÞs2Þ
� �

ð12Þ

under the condition, that the p pulses are applied after
the first gradient pulse t1(1 � 2a) < a (d + D) � d. The
three p pulse sequence is equivalent to the standard
PGSE in the case a ¼ 1

2
.

In the case of short gradient pulses applied directly
after excitation (2s „ D + d), the mixed-term attenua-
tion simplifies to

bas ¼
1

2
c2DGa �GsdD

2ð8ð1� aÞa� 1Þ: ð13Þ
pulses are applied. Shown is the case with a ¼ 1=ð4þ 2
ffiffiffi
2

p
Þ. (B) The

zero frequency lobe as opposed to the spectrum shown in Fig. 5 for



Fig. 5. The dephasing spectrum of the static gradient combined with
the CPMG sequence of three p pulses: the time between the p pulses is
twice the time between the p/2 and the first p pulse which corresponds
to a = 1/6. The average dephasing in this case is not zero, so a finite
lobe exists at zero frequency. The dominant peak is centered at 3p/2s.
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This term vanishes in the case a ¼ 2�
ffiffi
2

p

4
� 0:146. In

this case, the time integral of the dephasing F 0
sðtÞ is zero

and there is no peak in Fs(x) at zero frequency (Fig. 4B).
If the static gradient is large compared to the applied

gradients, the term bs prevails over bas. The term bs is
minimal for a = 1/6 which corresponds to the CPMG
timing, so in the case of strong internal gradients the
CPMG timing of p pulses is a better solution. When
the PGSE is combined with three CPMG timed p pulses
(Fig. 4A for the case of a = 1/6), the dephasing spectrum
of the static gradient is

FsðxÞ ¼ 4cGse
ixs sin

2 xs
6

2 cos 2xs
3
� 1

� �
x2

: ð14Þ

The dominant peak of the spectrum is centered at fre-
quency x = 3p/2s (Fig. 5) and the attenuation is

b ¼ c2D G2
ad

2ðD� d=3Þ þ 2

27
G2

ss
3

� �
� 2

3
c2DGa

�Gsd d2 þ 3dt1 þ 3ðt21 � s2=9Þ
� �

: ð15Þ

The condition 4t1 < D � 5d must hold so it is possible
to implement the CPMG timing.
Fig. 6. Stejskal–Tanner plots of PGSE, CPMG and MCPMG sequences mea
in the direction of background gradient, and (C) applied gradient perpendicu
in the cases (A) and (C) but in the case (B) the PGSE sequence returns sig
sequences.
In the case 2s � D the attenuation term is

b ¼ c2GaDdD � ðGadþGsD=18Þ þ c2DG2
sD

3=108: ð16Þ
The first term in the brackets is the short PGSE atten-

uation in the zero background gradient approximation.
The second term is the contribution of the mixed term
and is nine times smaller then the term of the PGSE
sequence without extra p pulses.

The reason why the three p pulse CPMG timing is
not suited for strong gradient pulses is that although
its spectrum peak is shifted off zero frequency, a finite
lobe at zero frequency still remains. This lobe, combined
with the zero frequency lobe of the PGSE dephasing,
gives the mixed term. To get rid of it, the first and the
third p pulse in the CPMG timed sequence have to be
slightly shifted so the gray area under the dephasing
curve in Fig. 4A is the same as the hatched area, with
other words: the average of the dephasing must be zero.
The mixed term is zero in this case.
2. Experiment

The experiment was performed on a 5 mm i.d. water-
filled tube at room temperature in a 0.7 T magnetic field
of a 10 cm bore electromagnet equipped with microimag-
ing gradient coils and a 10 mm i.d. detection coil. In the
standard PGSE sequence, the pulses with d = 1.7 ms,
D = 100 ms, s = 54 ms, and t1 = 5.1 ms were employed.
The applied gradient was stepped from 0 to 0.37 T/m.
The effective gradient was modulated with 10 ls block
p pulses: one such pulse for PGSE and three pulses for
PGSE combined with CPMG and modified PGSE (de-
noted here MCPMG). An average of eight echoes, ac-
quired with 3 s repetition time, was recorded for every
gradient step. The sequences were tested with uniform
background gradient set by the shimming coils. By mea-
suring T �

2 and T2 the order of background gradient mag-
sured on water with: (A) no background gradient, (B) applied gradient
lar to background gradient. The results for the diffusion constant agree
nificantly different result than the background gradient compensated



ð18Þ

Fig. 7. Plot of attenuation in PGSE vs. b. The fitting curve is given by lnðE=E0Þ ¼ �bDð365 G2
s

G2
a
þ 30 Gs

Ga
Þ, and the best fit parameters are

D = 2.1 · 10�9 m/s2 and Gs = �2.0 · 10�3 T/m.

Fig. 8. (A) Plot of attenuation in CPMG and MCPMG vs. b. The fitting curves are given by Eq. (17) and the reported best fit parameters. The curves
appear identical. In (B) the difference bCPMG � bMCPMG is shown. It is proportional to the applied gradient according to Eq. (18).
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nitude is estimated to mT/m. The results for PGSE,
PGSE combined with CPMG, and MCPMG are shown
in a Stejskal–Tanner plots in Fig. 6, where lnE/E0 is plot-
ted against the b factor: b ¼ c2d2ðD� d=3ÞG2

a.
The slope of the plot is the diffusion constant in the

case with no background gradient. With the background
gradient the plot is not a straight line but follows the
curve given by

b ¼ bD 1þ cs
G2

s

G2
a

þ cas cos h
Gs

Ga

 !
; ð17Þ

where h is the angle between the background and the ap-
plied gradient. The parameters for the sequence used
were

cs cas
PGSE 2s3

d2ð3D�dÞ ¼ 365 3D2

2dð3D�dÞ ¼ 30

CPMG 2s3

9d2ð3D�dÞ ¼ 41 D2

6dð3D�dÞ ¼ 3:3

MCPMG ð3
ffiffi
2

p
�4Þs3

d2ð3D�dÞ ¼ 44 0
It is clear that the sensitivity of CPMG and MCPMG
on the static gradient is an order smaller then the sensi-
tivity of the PGSE.

The results of PGSE measurement shown in Stejskal–
Tanner plot in Fig. 6B are presented in Fig. 7. Here the
fit is modeled by Eq. (17) and the non-linear regression
analysis returns the best fit values D = (2.1 ± 0.1) ·
10�9 m/s2 for the diffusion constant and Gs = �(2.0 ±
0.1) · 10�3 T/m for the background gradient. The back-
ground gradient was anti-parallel to the applied
gradient.

The results of CPMG and MCPMG shown in Fig.
8A appear identical on the same scale but the differ-
ence of the attenuations is proportional to the ap-
plied gradient with the slope given by the
background gradient

bCPMG � bMCPMG ¼ c2D
ð�3

ffiffiffi
2

p
� 34Þs3

27
G2

s þ
D2d
18

GsGa

 !
:
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This residue is shown in Fig. 8B and the best fit of the
slope gives the same value of background gradient as
the fit of the PGSE measurement.
3. Conclusion

To remove the influence of a weak static magnetic
field gradient (whatever its origin might be) in a PGSE
measurement of diffusion, two additional p pulses
should be used, one sð2�

ffiffiffi
2

p
Þ=2 and the other

sð2þ
ffiffiffi
2

p
Þ=2 after the p/2 pulse. The gradient pulse

length d must not exceed the time between the excitation
and the first p pulse. One should be careful about the
phases of the RF pulses to reduce the incomplete refocu-
sation so the phase cycle for the first four echoes xyyy,
�xyyy, x�y�y�y, �x�y�y�y was used in the pre-
sented study. The first symbol denotes the polarization
of the p/2 pulse and the last three are the polarizations
of the p pulses. It is possible to find the best timing of
the pulses for general conditions but it may not be pos-
sible to reduce the effect to zero. In that case, more RF
pulses should be used. In the case of a strong signal or
short transverse relaxation time the alternative is to
use stimulated echo as described in [9]. For instance,
in the condition II 13-interval pulse sequence the param-
eters describing the influence of the background gradient
are cs = 6.2 and cas = 0.5 making this sequence even less
sensitive to the background gradient.
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